

Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich

Departement of Computer Science Markus Püschel, David Steurer 24. September 2018

## Algorithms & Data StructuresHomework 0HS 18

## **Exercise 0.1** Find the Shortest Path.

Consider a hypothetical floor plan such that the area is organized in hexagonal cells as shown in Figure 1. We begin at the cell marked *start*, and we want to reach the cell marked *end*. We can travel from one cell to another, if the two cells are neighbouring, i.e. they share an edge. Each time we cross from one cell to a destination cell, we consider the move as a single step and the destination cell as visited. We want to find the shortest path from the start to the end, minimizing the number of steps.

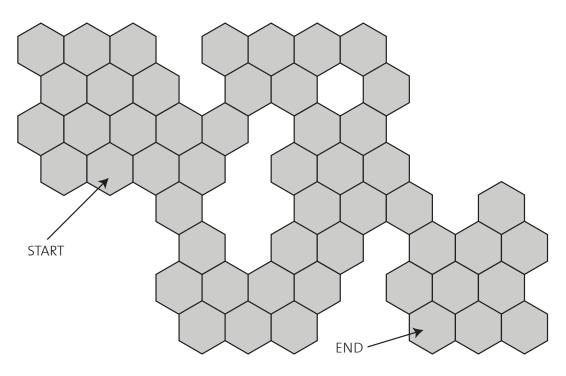



Figure 1: Floor plan

Consider the following algorithm:

- 1. We consider the start cell as visited, and we write the number zero on the cell.
- 2. If a cell has the number n written on it, we can visit all neighbouring cells, writing the number n+1 on it if either:
  - the neighbouring cell has not been visited before, or
  - the neighbouring cell has been visited before and holds the number m such that m > n+1.
- 3. We stop the execution of the algorithm when we can no longer execute 2.

Your tasks:

- 1. Execute the algorithm on the floor plan given in Figure 1, writing numbers on each cell.
- 2. How many steps do we need to reach the end cell?
- 3. For a given plan with N cells including the start and the end cell, how many steps do we need to reach the end cell, starting from the start cell, in the worst case scenario?

## **Exercise 0.2** Induction.

1. Prove via mathematical induction, that the following holds for any positive integer *n*:

$$1^{2} + 2^{2} + 3^{2} + \ldots + n^{2} = \frac{(n)(n+1)(2n+1)}{6}$$

- Base Case.
- Induction Hypothesis.
- Inductive Step.

- 2. Prove via mathematical induction that for any positive integer n,  $2n^3 + 3n^2 + n$  is divisible by 6.
  - Base Case.
  - Induction Hypothesis.
  - Inductive Step.

## **Exercise 0.3** Coloring a Map.

Given is a map that is divided by n (pairwise different) straight lines. You want to color the regions on the map (i.e., the areas bordered by the lines), such that no two neighbouring regions (i.e., regions that share a common segment of a line as a border) get the same color.

Prove by mathematical induction on n, that you can color every such map with 2 colors.

• Base Case.

• Induction Hypothesis.

• Inductive Step.

**Homework:** This homework does not have to be submitted and will be discussed in the first exercise session on 24.9.2018